参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!

714. 买卖股票的最佳时机含手续费

力扣题目链接

给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:

  • 输入: prices = [1, 3, 2, 8, 4, 9], fee = 2
  • 输出: 8

解释: 能够达到的最大利润:

  • 在此处买入 prices[0] = 1
  • 在此处卖出 prices[3] = 8
  • 在此处买入 prices[4] = 4
  • 在此处卖出 prices[5] = 9
  • 总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.

注意:

  • 0 < prices.length <= 50000.
  • 0 < prices[i] < 50000.
  • 0 <= fee < 50000.

思路

本题优先掌握动态规划解法,在动态规划章节中,还会详细讲解本题。

本题相对于贪心算法:122.买卖股票的最佳时机II,多添加了一个条件就是手续费。

贪心算法

贪心算法:122.买卖股票的最佳时机II中使用贪心策略不用关心具体什么时候买卖,只要收集每天的正利润,最后稳稳的就是最大利润了。

而本题有了手续费,就要关心什么时候买卖了,因为计算所获得利润,需要考虑买卖利润可能不足以扣减手续费的情况。

如果使用贪心策略,就是最低值买,最高值(如果算上手续费还盈利)就卖。

此时无非就是要找到两个点,买入日期,和卖出日期。

  • 买入日期:其实很好想,遇到更低点就记录一下。
  • 卖出日期:这个就不好算了,但也没有必要算出准确的卖出日期,只要当前价格大于(最低价格+手续费),就可以收获利润,至于准确的卖出日期,就是连续收获利润区间里的最后一天(并不需要计算是具体哪一天)。

所以我们在做收获利润操作的时候其实有三种情况:

  • 情况一:收获利润的这一天并不是收获利润区间里的最后一天(不是真正的卖出,相当于持有股票),所以后面要继续收获利润。
  • 情况二:前一天是收获利润区间里的最后一天(相当于真正的卖出了),今天要重新记录最小价格了。
  • 情况三:不作操作,保持原有状态(买入,卖出,不买不卖)

贪心算法C++代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int result = 0;
        int minPrice = prices[0]; // 记录最低价格
        for (int i = 1; i < prices.size(); i++) {
            // 情况二:相当于买入
            if (prices[i] < minPrice) minPrice = prices[i];

            // 情况三:保持原有状态(因为此时买则不便宜,卖则亏本)
            if (prices[i] >= minPrice && prices[i] <= minPrice + fee) {
                continue;
            }

            // 计算利润,可能有多次计算利润,最后一次计算利润才是真正意义的卖出
            if (prices[i] > minPrice + fee) {
                result += prices[i] - minPrice - fee;
                minPrice = prices[i] - fee; // 情况一,这一步很关键,避免重复扣手续费
            }
        }
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

从代码中可以看出对情况一的操作,因为如果还在收获利润的区间里,表示并不是真正的卖出,而计算利润每次都要减去手续费,所以要让minPrice = prices[i] - fee;,这样在明天收获利润的时候,才不会多减一次手续费!

大家也可以发现,情况三,那块代码是可以删掉的,我是为了让代码表达清晰,所以没有精简。

动态规划

我在公众号「代码随想录」里将在下一个系列详细讲解动态规划,所以本题解先给出我的C++代码(带详细注释),感兴趣的同学可以自己先学习一下。

相对于贪心算法:122.买卖股票的最佳时机II的动态规划解法中,只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。

C++代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        // dp[i][1]第i天持有的最多现金
        // dp[i][0]第i天持有股票所剩的最多现金
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(2, 0));
        dp[0][0] -= prices[0]; // 持股票
        for (int i = 1; i < n; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
        }
        return max(dp[n - 1][0], dp[n - 1][1]);
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

当然可以对空间进行优化,因为当前状态只是依赖前一个状态。

C++ 代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int n = prices.size();
        int holdStock = (-1) * prices[0]; // 持股票
        int saleStock = 0; // 卖出股票
        for (int i = 1; i < n; i++) {
            int previousHoldStock = holdStock;
            holdStock = max(holdStock, saleStock - prices[i]);
            saleStock = max(saleStock, previousHoldStock + prices[i] - fee);
        }
        return saleStock;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

总结

本题贪心的思路其实是比较难的,动态规划才是常规做法,但也算是给大家拓展一下思路,感受一下贪心的魅力。

后期我们在讲解 股票问题系列的时候,会用动规的方式把股票问题穿个线。

其他语言版本

Java

// 贪心思路
class Solution {
    public int maxProfit(int[] prices, int fee) {
        int buy = prices[0] + fee;
        int sum = 0;
        for (int p : prices) {
            if (p + fee < buy) {
                buy = p + fee;
            } else if (p > buy){
                sum += p - buy;
                buy = p;
            }
        }
        return sum;
    }
}
class Solution { // 动态规划
    public int maxProfit(int[] prices, int fee) {
        if (prices == null || prices.length < 2) {
            return 0;
        }
 
        int[][] dp = new int[prices.length][2];
 
        // base case
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
 
        for (int i = 1; i < prices.length; i++) {
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee);
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
        }
 
        return dp[prices.length - 1][0];
    }
}

Python

class Solution: # 贪心思路
    def maxProfit(self, prices: List[int], fee: int) -> int:
        result = 0
        minPrice = prices[0]
        for i in range(1, len(prices)):
            if prices[i] < minPrice: # 此时有更低的价格,可以买入
                minPrice = prices[i]
            elif prices[i] > (minPrice + fee): # 此时有利润,同时假买入高价的股票,看看是否继续盈利
                result += prices[i] - (minPrice + fee)
                minPrice = prices[i] - fee
            else: # minPrice<= prices[i] <= minPrice + fee, 价格处于minPrice和minPrice+fee之间,不做操作
                continue
        return result

Go

func maxProfit(prices []int, fee int) int {
    var minBuy int = prices[0] //第一天买入
    var res int
    for i := 0; i < len(prices); i++ {
        //如果当前价格小于最低价,则在此处买入
        if prices[i] < minBuy {
            minBuy = prices[i]
        }
        //如果以当前价格卖出亏本,则不卖,继续找下一个可卖点
        if prices[i] >= minBuy && prices[i]-fee-minBuy <= 0 {
            continue
        }
        //可以售卖了
        if prices[i] > minBuy+fee {
            //累加每天的收益
            res += prices[i]-minBuy-fee
            //更新最小值(如果还在收获利润的区间里,表示并不是真正的卖出,而计算利润每次都要减去手续费,所以要让minBuy = prices[i] - fee;,这样在明天收获利润的时候,才不会多减一次手续费!)
            minBuy = prices[i]-fee
        }
    }
    return res
}

JavaScript

// 贪心思路
var maxProfit = function(prices, fee) {
    let result = 0
    let minPrice = prices[0]
    for(let i = 1; i < prices.length; i++) {
        if(prices[i] < minPrice) {
            minPrice = prices[i]
        }
        if(prices[i] >= minPrice && prices[i] <= minPrice + fee) {
            continue
        }

        if(prices[i] > minPrice + fee) {
            result += prices[i] - minPrice - fee
            // 买入和卖出只需要支付一次手续费
            minPrice = prices[i] -fee
        }
    }
    return result
};

// 动态规划
/**
 * @param {number[]} prices
 * @param {number} fee
 * @return {number}
 */
var maxProfit = function(prices, fee) {
    // 滚动数组
    // have表示当天持有股票的最大收益
    // notHave表示当天不持有股票的最大收益
    // 把手续费算在买入价格中
    let n = prices.length,
        have = -prices[0]-fee,   // 第0天持有股票的最大收益
        notHave = 0;             // 第0天不持有股票的最大收益
    for (let i = 1; i < n; i++) {
        // 第i天持有股票的最大收益由两种情况组成
        // 1、第i-1天就已经持有股票,第i天什么也没做
        // 2、第i-1天不持有股票,第i天刚买入
        have = Math.max(have, notHave - prices[i] - fee);
        // 第i天不持有股票的最大收益由两种情况组成
        // 1、第i-1天就已经不持有股票,第i天什么也没做
        // 2、第i-1天持有股票,第i天刚卖出
        notHave = Math.max(notHave, have + prices[i]);
    }
    // 最后手中不持有股票,收益才能最大化
    return notHave;
};

TypeScript

贪心

function maxProfit(prices: number[], fee: number): number {
    if (prices.length === 0) return 0;
    let minPrice: number = prices[0];
    let profit: number = 0;
    for (let i = 1, length = prices.length; i < length; i++) {
        if (minPrice > prices[i]) {
            minPrice = prices[i];
        }
        if (minPrice + fee < prices[i]) {
            profit += prices[i] - minPrice - fee;
            minPrice = prices[i] - fee;
        }
    }
    return profit;
};

动态规划

function maxProfit(prices: number[], fee: number): number {
    /**
        dp[i][1]: 第i天不持有股票的最大所剩现金
        dp[i][0]: 第i天持有股票的最大所剩现金
     */
    const length: number = prices.length;
    const dp: number[][] = new Array(length).fill(0).map(_ => []);
    dp[0][1] = 0;
    dp[0][0] = -prices[0];
    for (let i = 1, length = prices.length; i < length; i++) {
        dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
        dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
    }
    return Math.max(dp[length - 1][0], dp[length - 1][1]);
};

Scala

贪心思路:

object Solution {
  def maxProfit(prices: Array[Int], fee: Int): Int = {
    var result = 0
    var minPrice = prices(0)
    for (i <- 1 until prices.length) {
      if (prices(i) < minPrice) {
        minPrice = prices(i) // 比当前最小值还小
      }
      if (prices(i) > minPrice + fee) {
        result += prices(i) - minPrice - fee
        minPrice = prices(i) - fee
      }
    }
    result
  }
}