Union-Find 算法详解

GitHub

通知:数据结构精品课递归算法专题课 限时附赠网站会员,全新纸质书《labuladong 的算法笔记》 出版,签名版限时半价!另外,建议你在我的 网站 学习文章,体验更好。

读完本文,你不仅学会了算法套路,还可以顺便解决如下题目:

-----------

记得我之前在讲 图论算法基础 时说图论相关的算法不会经常考,但最近被打脸了,因为一些读者和我反馈近期求职面试涉及很多图论相关的算法,可能是因为环境不好所以算法这块更卷了吧。

常见的图论算法我都已经写过了,这里按难度顺序列举一下:

  1. 图论算法基础
  2. 二分图判定算法及应用
  3. 环检测/拓扑排序算法及应用
  4. 并查集算法及应用(本文)
  5. Kruskal 最小生成树算法及应用
  6. Prim 最小生成树算法及应用
  7. Dijkstra 算法模板及应用

并查集(Union-Find)算法是一个专门针对「动态连通性」的算法,我之前写过两次,因为这个算法的考察频率高,而且它也是最小生成树算法的前置知识,所以我整合了本文,争取一篇文章把这个算法讲明白。

首先,从什么是图的动态连通性开始讲。

一、动态连通性

简单说,动态连通性其实可以抽象成给一幅图连线。比如下面这幅图,总共有 10 个节点,他们互不相连,分别用 0~9 标记:

现在我们的 Union-Find 算法主要需要实现这两个 API:

class UF {
    /* 将 p 和 q 连接 */
    public void union(int p, int q);
    /* 判断 p 和 q 是否连通 */
    public boolean connected(int p, int q);
    /* 返回图中有多少个连通分量 */
    public int count();
}

这里所说的「连通」是一种等价关系,也就是说具有如下三个性质:

1、自反性:节点 pp 是连通的。

2、对称性:如果节点 pq 连通,那么 qp 也连通。

3、传递性:如果节点 pq 连通,qr 连通,那么 pr 也连通。

比如说之前那幅图,0~9 任意两个不同的点都不连通,调用 connected 都会返回 false,连通分量为 10 个。

如果现在调用 union(0, 1),那么 0 和 1 被连通,连通分量降为 9 个。

再调用 union(1, 2),这时 0,1,2 都被连通,调用 connected(0, 2) 也会返回 true,连通分量变为 8 个。

判断这种「等价关系」非常实用,比如说编译器判断同一个变量的不同引用,比如社交网络中的朋友圈计算等等。

这样,你应该大概明白什么是动态连通性了,Union-Find 算法的关键就在于 unionconnected 函数的效率。那么用什么模型来表示这幅图的连通状态呢?用什么数据结构来实现代码呢?

二、基本思路

注意我刚才把「模型」和具体的「数据结构」分开说,这么做是有原因的。因为我们使用森林(若干棵树)来表示图的动态连通性,用数组来具体实现这个森林。

怎么用森林来表示连通性呢?我们设定树的每个节点有一个指针指向其父节点,如果是根节点的话,这个指针指向自己。比如说刚才那幅 10 个节点的图,一开始的时候没有相互连通,就是这样:

class UF {
    // 记录连通分量
    private int count;
    // 节点 x 的父节点是 parent[x]
    private int[] parent;
 
    /* 构造函数,n 为图的节点总数 */
    public UF(int n) {
        // 一开始互不连通
        this.count = n;
        // 父节点指针初始指向自己
        parent = new int[n];
        for (int i = 0; i < n; i++)
            parent[i] = i;
    }
 
    /* 其他函数 */
}

如果某两个节点被连通,则让其中的(任意)一个节点的根节点接到另一个节点的根节点上

class UF {
    // 为了节约篇幅,省略上文给出的代码部分...
 
    public void union(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        if (rootP == rootQ)
            return;
        // 将两棵树合并为一棵
        parent[rootP] = rootQ;
        // parent[rootQ] = rootP 也一样
        count--; // 两个分量合二为一
    }
 
    /* 返回某个节点 x 的根节点 */
    private int find(int x) {
        // 根节点的 parent[x] == x
        while (parent[x] != x)
            x = parent[x];
        return x;
    }
 
    /* 返回当前的连通分量个数 */
    public int count() { 
        return count;
    }
}

这样,如果节点 pq 连通的话,它们一定拥有相同的根节点

class UF {
    // 为了节约篇幅,省略上文给出的代码部分...
 
    public boolean connected(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        return rootP == rootQ;
    }
}

至此,Union-Find 算法就基本完成了。是不是很神奇?竟然可以这样使用数组来模拟出一个森林,如此巧妙的解决这个比较复杂的问题!

那么这个算法的复杂度是多少呢?我们发现,主要 API connectedunion 中的复杂度都是 find 函数造成的,所以说它们的复杂度和 find 一样。

find 主要功能就是从某个节点向上遍历到树根,其时间复杂度就是树的高度。我们可能习惯性地认为树的高度就是 logN,但这并不一定。logN 的高度只存在于平衡二叉树,对于一般的树可能出现极端不平衡的情况,使得「树」几乎退化成「链表」,树的高度最坏情况下可能变成 N

所以说上面这种解法,find , union , connected 的时间复杂度都是 O(N)。这个复杂度很不理想的,你想图论解决的都是诸如社交网络这样数据规模巨大的问题,对于 unionconnected 的调用非常频繁,每次调用需要线性时间完全不可忍受。

问题的关键在于,如何想办法避免树的不平衡呢?只需要略施小计即可。

三、平衡性优化

我们要知道哪种情况下可能出现不平衡现象,关键在于 union 过程:

class UF {
    // 为了节约篇幅,省略上文给出的代码部分...
 
    public void union(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        if (rootP == rootQ)
            return;
        // 将两棵树合并为一棵
        parent[rootP] = rootQ;
        // parent[rootQ] = rootP 也可以
        count--;
    }
}

我们一开始就是简单粗暴的把 p 所在的树接到 q 所在的树的根节点下面,那么这里就可能出现「头重脚轻」的不平衡状况,比如下面这种局面:

长此以往,树可能生长得很不平衡。我们其实是希望,小一些的树接到大一些的树下面,这样就能避免头重脚轻,更平衡一些。解决方法是额外使用一个 size 数组,记录每棵树包含的节点数,我们不妨称为「重量」:

class UF {
    private int count;
    private int[] parent;
    // 新增一个数组记录树的“重量”
    private int[] size;
 
    public UF(int n) {
        this.count = n;
        parent = new int[n];
        // 最初每棵树只有一个节点
        // 重量应该初始化 1
        size = new int[n];
        for (int i = 0; i < n; i++) {
            parent[i] = i;
            size[i] = 1;
        }
    }
    /* 其他函数 */
}

比如说 size[3] = 5 表示,以节点 3 为根的那棵树,总共有 5 个节点。这样我们可以修改一下 union 方法:

class UF {
    // 为了节约篇幅,省略上文给出的代码部分...
 
    public void union(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        if (rootP == rootQ)
            return;
        
        // 小树接到大树下面,较平衡
        if (size[rootP] > size[rootQ]) {
            parent[rootQ] = rootP;
            size[rootP] += size[rootQ];
        } else {
            parent[rootP] = rootQ;
            size[rootQ] += size[rootP];
        }
        count--;
    }
}
 

这样,通过比较树的重量,就可以保证树的生长相对平衡,树的高度大致在 logN 这个数量级,极大提升执行效率。

此时,find , union , connected 的时间复杂度都下降为 O(logN),即便数据规模上亿,所需时间也非常少。

四、路径压缩

这步优化虽然代码很简单,但原理非常巧妙。

其实我们并不在乎每棵树的结构长什么样,只在乎根节点

因为无论树长啥样,树上的每个节点的根节点都是相同的,所以能不能进一步压缩每棵树的高度,使树高始终保持为常数?

这样每个节点的父节点就是整棵树的根节点,find 就能以 O(1) 的时间找到某一节点的根节点,相应的,connectedunion 复杂度都下降为 O(1)。

要做到这一点主要是修改 find 函数逻辑,非常简单,但你可能会看到两种不同的写法。

第一种是在 find 中加一行代码:

class UF {
    // 为了节约篇幅,省略上文给出的代码部分...
 
    private int find(int x) {
        while (parent[x] != x) {
            // 这行代码进行路径压缩
            parent[x] = parent[parent[x]];
            x = parent[x];
        }
        return x;
    }
}

这个操作有点匪夷所思,看个 GIF 就明白它的作用了(为清晰起见,这棵树比较极端):

用语言描述就是,每次 while 循环都会让部分子节点向上移动,这样每次调用 find 函数向树根遍历的同时,顺手就将树高缩短了。

路径压缩的第二种写法是这样:

class UF {
    // 为了节约篇幅,省略上文给出的代码部分...
    
    // 第二种路径压缩的 find 方法
    public int find(int x) {
        if (parent[x] != x) {
            parent[x] = find(parent[x]);
        }
        return parent[x];
    }
}
 

我一度认为这种递归写法和第一种迭代写法做的事情一样,但实际上是我大意了,有读者指出这种写法进行路径压缩的效率是高于上一种解法的。

这个递归过程有点不好理解,你可以自己手画一下递归过程。我把这个函数做的事情翻译成迭代形式,方便你理解它进行路径压缩的原理:

// 这段迭代代码方便你理解递归代码所做的事情
public int find(int x) {
    // 先找到根节点
    int root = x;
    while (parent[root] != root) {
        root = parent[root];
    }
    // 然后把 x 到根节点之间的所有节点直接接到根节点下面
    int old_parent = parent[x];
    while (x != root) {
        parent[x] = root;
        x = old_parent;
        old_parent = parent[old_parent];
    }
    return root;
}

这种路径压缩的效果如下:

比起第一种路径压缩,显然这种方法压缩得更彻底,直接把一整条树枝压平,一点意外都没有。就算一些极端情况下产生了一棵比较高的树,只要一次路径压缩就能大幅降低树高,从 摊还分析 的角度来看,所有操作的平均时间复杂度依然是 O(1),所以从效率的角度来说,推荐你使用这种路径压缩算法。

另外,如果使用路径压缩技巧,那么 size 数组的平衡优化就不是特别必要了。所以你一般看到的 Union Find 算法应该是如下实现:

class UF {
    // 连通分量个数
    private int count;
    // 存储每个节点的父节点
    private int[] parent;
 
    // n 为图中节点的个数
    public UF(int n) {
        this.count = n;
        parent = new int[n];
        for (int i = 0; i < n; i++) {
            parent[i] = i;
        }
    }
    
    // 将节点 p 和节点 q 连通
    public void union(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        
        if (rootP == rootQ)
            return;
        
        parent[rootQ] = rootP;
        // 两个连通分量合并成一个连通分量
        count--;
    }
 
    // 判断节点 p 和节点 q 是否连通
    public boolean connected(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        return rootP == rootQ;
    }
 
    public int find(int x) {
        if (parent[x] != x) {
            parent[x] = find(parent[x]);
        }
        return parent[x];
    }
 
    // 返回图中的连通分量个数
    public int count() {
        return count;
    }
}

Union-Find 算法的复杂度可以这样分析:构造函数初始化数据结构需要 O(N) 的时间和空间复杂度;连通两个节点 union、判断两个节点的连通性 connected、计算连通分量 count 所需的时间复杂度均为 O(1)。

到这里,相信你已经掌握了 Union-Find 算法的核心逻辑,总结一下我们优化算法的过程:

1、用 parent 数组记录每个节点的父节点,相当于指向父节点的指针,所以 parent 数组内实际存储着一个森林(若干棵多叉树)。

2、用 size 数组记录着每棵树的重量,目的是让 union 后树依然拥有平衡性,保证各个 API 时间复杂度为 O(logN),而不会退化成链表影响操作效率。

3、在 find 函数中进行路径压缩,保证任意树的高度保持在常数,使得各个 API 时间复杂度为 O(1)。使用了路径压缩之后,可以不使用 size 数组的平衡优化。

下面我们看一些具体的并查集题目。

题目实践

力扣第 323 题「无向图中连通分量的数目」就是最基本的连通分量题目:

给你输入一个包含 n 个节点的图,用一个整数 n 和一个数组 edges 表示,其中 edges[i] = [ai, bi] 表示图中节点 aibi 之间有一条边。请你计算这幅图的连通分量个数。

函数签名如下:

int countComponents(int n, int[][] edges)

这道题我们可以直接套用 UF 类来解决:

public int countComponents(int n, int[][] edges) {
    UF uf = new UF(n);
    // 将每个节点进行连通
    for (int[] e : edges) {
        uf.union(e[0], e[1]);
    }
    // 返回连通分量的个数
    return uf.count();
}
 
class UF {
    // 见上文
}

另外,一些使用 DFS 深度优先算法解决的问题,也可以用 Union-Find 算法解决

比如力扣第 130 题「被围绕的区域」:

给你一个 M×N 的二维矩阵,其中包含字符 XO,让你找到矩阵中四面X 围住的 O,并且把它们替换成 X

void solve(char[][] board);

注意哦,必须是四面被围的 O 才能被换成 X,也就是说边角上的 O 一定不会被围,进一步,与边角上的 O 相连的 O 也不会被 X 围四面,也不会被替换。

note:这让我想起小时候玩的棋类游戏「黑白棋」,只要你用两个棋子把对方的棋子夹在中间,对方的子就被替换成你的子。可见,占据四角的棋子是无敌的,与其相连的边棋子也是无敌的(无法被夹掉)。

其实这个问题应该归为 岛屿系列问题 使用 DFS 算法解决:

先用 for 循环遍历棋盘的四边,用 DFS 算法把那些与边界相连的 O 换成一个特殊字符,比如 #;然后再遍历整个棋盘,把剩下的 O 换成 X,把 # 恢复成 O。这样就能完成题目的要求,时间复杂度 O(MN)。

但这个问题也可以用 Union-Find 算法解决,虽然实现复杂一些,甚至效率也略低,但这是使用 Union-Find 算法的通用思想,值得一学。

你可以把那些不需要被替换的 O 看成一个拥有独门绝技的门派,它们有一个共同「祖师爷」叫 dummy,这些 Odummy 互相连通,而那些需要被替换的 Odummy 不连通

这就是 Union-Find 的核心思路,明白这个图,就很容易看懂代码了。

首先要解决的是,根据我们的实现,Union-Find 底层用的是一维数组,构造函数需要传入这个数组的大小,而题目给的是一个二维棋盘。

这个很简单,二维坐标 (x,y) 可以转换成 x * n + y 这个数(m 是棋盘的行数,n 是棋盘的列数),敲黑板,这是将二维坐标映射到一维的常用技巧

其次,我们之前描述的「祖师爷」是虚构的,需要给他老人家留个位置。索引 [0.. m*n-1] 都是棋盘内坐标的一维映射,那就让这个虚拟的 dummy 节点占据索引 m * n 好了。

看解法代码:

void solve(char[][] board) {
    if (board.length == 0) return;
 
    int m = board.length;
    int n = board[0].length;
    // 给 dummy 留一个额外位置
    UF uf = new UF(m * n + 1);
    int dummy = m * n;
    // 将首列和末列的 O 与 dummy 连通
    for (int i = 0; i < m; i++) {
        if (board[i][0] == 'O')
            uf.union(i * n, dummy);
        if (board[i][n - 1] == 'O')
            uf.union(i * n + n - 1, dummy);
    }
    // 将首行和末行的 O 与 dummy 连通
    for (int j = 0; j < n; j++) {
        if (board[0][j] == 'O')
            uf.union(j, dummy);
        if (board[m - 1][j] == 'O')
            uf.union(n * (m - 1) + j, dummy);
    }
    // 方向数组 d 是上下左右搜索的常用手法
    int[][] d = new int[][]{{1,0}, {0,1}, {0,-1}, {-1,0}};
    for (int i = 1; i < m - 1; i++) 
        for (int j = 1; j < n - 1; j++) 
            if (board[i][j] == 'O')
                // 将此 O 与上下左右的 O 连通
                for (int k = 0; k < 4; k++) {
                    int x = i + d[k][0];
                    int y = j + d[k][1];
                    if (board[x][y] == 'O')
                        uf.union(x * n + y, i * n + j);
                }
    // 所有不和 dummy 连通的 O,都要被替换
    for (int i = 1; i < m - 1; i++) 
        for (int j = 1; j < n - 1; j++) 
            if (!uf.connected(dummy, i * n + j))
                board[i][j] = 'X';
}
 
class UF {
    // 见上文
}

这段代码很长,其实就是刚才的思路实现,只有和边界 O 相连的 O 才具有和 dummy 的连通性,他们不会被替换。

其实用 Union-Find 算法解决这个简单的问题有点杀鸡用牛刀,它可以解决更复杂,更具有技巧性的问题,主要思路是适时增加虚拟节点,想办法让元素「分门别类」,建立动态连通关系

力扣第 990 题「等式方程的可满足性」用 Union-Find 算法就显得十分优美了,题目是这样:

给你一个数组 equations,装着若干字符串表示的算式。每个算式 equations[i] 长度都是 4,而且只有这两种情况:a==b 或者 a!=b,其中 a,b 可以是任意小写字母。你写一个算法,如果 equations 中所有算式都不会互相冲突,返回 true,否则返回 false。

比如说,输入 ["a==b","b!=c","c==a"],算法返回 false,因为这三个算式不可能同时正确。

再比如,输入 ["c==c","b==d","x!=z"],算法返回 true,因为这三个算式并不会造成逻辑冲突。

我们前文说过,动态连通性其实就是一种等价关系,具有「自反性」「传递性」和「对称性」,其实 == 关系也是一种等价关系,具有这些性质。所以这个问题用 Union-Find 算法就很自然。

核心思想是,将 equations 中的算式根据 ==!= 分成两部分,先处理 == 算式,使得他们通过相等关系各自勾结成门派(连通分量);然后处理 != 算式,检查不等关系是否破坏了相等关系的连通性

boolean equationsPossible(String[] equations) {
    // 26 个英文字母
    UF uf = new UF(26);
    // 先让相等的字母形成连通分量
    for (String eq : equations) {
        if (eq.charAt(1) == '=') {
            char x = eq.charAt(0);
            char y = eq.charAt(3);
            uf.union(x - 'a', y - 'a');
        }
    }
    // 检查不等关系是否打破相等关系的连通性
    for (String eq : equations) {
        if (eq.charAt(1) == '!') {
            char x = eq.charAt(0);
            char y = eq.charAt(3);
            // 如果相等关系成立,就是逻辑冲突
            if (uf.connected(x - 'a', y - 'a'))
                return false;
        }
    }
    return true;
}
 
class UF {
    // 见上文
}

至此,这道判断算式合法性的问题就解决了,借助 Union-Find 算法,是不是很简单呢?

最后,Union-Find 算法也会在一些其他经典图论算法中用到,比如判断「图」和「树」,以及最小生成树的计算,详情见 Kruskal 最小生成树算法


引用本文的文章


引用本文的题目

安装 我的 Chrome 刷题插件 点开下列题目可直接查看解题思路:


_____________

《labuladong 的算法小抄》已经出版,关注公众号查看详情;后台回复「全家桶」可下载配套 PDF 和刷题全家桶

====其他语言代码====

javascript

class UF {
    // 记录连通分量
    count;
 
    // 节点 x 的根节点是 parent[x]
    parent;
 
    constructor(n) {
 
        // 一开始互不连通
        this.count = n;
 
        // 父节点指针初始指向自己
        this.parent = new Array(n);
 
        for (let i = 0; i < n; i++)
            this.parent[i] = i;
    }
 
    /* 返回某个节点 x 的根节点 */
    find(x) {
        // 根节点的 parent[x] == x
        while (this.parent[x] !== x)
            x = this.parent[x];
        return x;
    }
 
    /* 将 p 和 q 连接 */
    union(p, q) {
        // 如果某两个节点被连通,则让其中的(任意)
        // 一个节点的根节点接到另一个节点的根节点上
        let rootP = this.find(p);
        let rootQ = this.find(q);
        if (rootP === rootQ) return;
 
        // 将两棵树合并为一棵
        parent[rootP] = rootQ;
 
        // parent[rootQ] = rootP 也一样
        count--; // 两个分量合二为一
    }
 
    /* 判断 p 和 q 是否连通 */
    connected(p, q) {
        let rootP = this.find(p);
        let rootQ = this.find(q);
        return rootP === rootQ;
    };
 
    /* 返回图中有多少个连通分量 */
    getCount() {
        return this.count;
    };
}

引入size属性,更好地平衡森林。

class UF {
    // 记录连通分量
    count;
 
    // 节点 x 的根节点是 parent[x]
    parent;
 
    // 记录树的“重量”
    size;
 
    constructor(n) {
 
        // 一开始互不连通
        this.count = n;
 
        // 父节点指针初始指向自己
        this.parent = new Array(n);
 
        this.size = new Array(n);
 
        for (let i = 0; i < n; i++) {
            this.parent[i] = i;
            this.size[i] = 1;
        }
    }
 
    /* 返回某个节点 x 的根节点 */
    find(x) {
        // 根节点的 parent[x] == x
        while (this.parent[x] !== x) {
            // 进行路径压缩
            this.parent[x] = this.parent[this.parent[x]];
            x = this.parent[x];
        }
        return x;
    }
 
    /* 将 p 和 q 连接 */
    union(p, q) {
        // 如果某两个节点被连通,则让其中的(任意)
        // 一个节点的根节点接到另一个节点的根节点上
        let rootP = this.find(p);
        let rootQ = this.find(q);
        if (rootP === rootQ) return;
 
        // 小树接到大树下面,较平衡
        if (this.size[rootP] > this.size[rootQ]) {
            this.parent[rootQ] = rootP;
            this.size[rootP] += this.size[rootQ];
        } else {
            this.parent[rootP] = rootQ;
            this.size[rootQ] += this.size[rootP];
        }
 
        this.count--; // 两个分量合二为一
    }
 
    /* 判断 p 和 q 是否连通 */
    connected(p, q) {
        let rootP = this.find(p);
        let rootQ = this.find(q);
        return rootP === rootQ;
    };
 
    /* 返回图中有多少个连通分量 */
    getCount() {
        return this.count;
    };
}