滑动窗口算法框架

GitHub

通知:数据结构精品课递归算法专题课 限时附赠网站会员,全新纸质书《labuladong 的算法笔记》 出版,签名版限时半价!另外,建议你在我的 网站 学习文章,体验更好。

读完本文,你不仅学会了算法套路,还可以顺便解决如下题目:

-----------

tip:本文有视频版:滑动窗口算法核心模板框架。建议关注我的 B 站账号,我会用视频领读的方式带大家学习那些稍有难度的算法技巧。

鉴于前文 二分搜索框架详解 的那首《二分搜索升天词》很受好评,并在民间广为流传,成为安睡助眠的一剂良方,今天在滑动窗口算法框架中,我再次编写一首小诗来歌颂滑动窗口算法的伟大(手动狗头):

哈哈,我自己快把自己夸上天了,大家乐一乐就好,不要当真:)

关于双指针的快慢指针和左右指针的用法,可以参见前文 双指针技巧汇总,本文就解决一类最难掌握的双指针技巧:滑动窗口技巧。总结出一套框架,可以保你闭着眼睛都能写出正确的解法。

说起滑动窗口算法,很多读者都会头疼。这个算法技巧的思路非常简单,就是维护一个窗口,不断滑动,然后更新答案么。LeetCode 上有起码 10 道运用滑动窗口算法的题目,难度都是中等和困难。该算法的大致逻辑如下:

int left = 0, right = 0;
 
while (left < right && right < s.size()) {
    // 增大窗口
    window.add(s[right]);
    right++;
    
    while (window needs shrink) {
        // 缩小窗口
        window.remove(s[left]);
        left++;
    }
}

这个算法技巧的时间复杂度是 O(N),比字符串暴力算法要高效得多。

其实困扰大家的,不是算法的思路,而是各种细节问题。比如说如何向窗口中添加新元素,如何缩小窗口,在窗口滑动的哪个阶段更新结果。即便你明白了这些细节,也容易出 bug,找 bug 还不知道怎么找,真的挺让人心烦的。

所以今天我就写一套滑动窗口算法的代码框架,我连再哪里做输出 debug 都给你写好了,以后遇到相关的问题,你就默写出来如下框架然后改三个地方就行,还不会出 bug

/* 滑动窗口算法框架 */
void slidingWindow(string s) {
    // 用合适的数据结构记录窗口中的数据
    unordered_map<char, int> window;
    
    int left = 0, right = 0;
    while (right < s.size()) {
        // c 是将移入窗口的字符
        char c = s[right];
        window.add(c)
        // 增大窗口
        right++;
        // 进行窗口内数据的一系列更新
        ...
 
        /*** debug 输出的位置 ***/
        // 注意在最终的解法代码中不要 print
        // 因为 IO 操作很耗时,可能导致超时
        printf("window: [%d, %d)\n", left, right);
        /********************/
        
        // 判断左侧窗口是否要收缩
        while (left < right && window needs shrink) {
            // d 是将移出窗口的字符
            char d = s[left];
            window.remove(d)
            // 缩小窗口
            left++;
            // 进行窗口内数据的一系列更新
            ...
        }
    }
}

其中两处 ... 表示的更新窗口数据的地方,到时候你直接往里面填就行了

而且,这两个 ... 处的操作分别是扩大和缩小窗口的更新操作,等会你会发现它们操作是完全对称的。

另外,虽然滑动窗口代码框架中有一个嵌套的 while 循环,但算法的时间复杂度依然是 O(N),其中 N 是输入字符串/数组的长度。

为什么呢?简单说,指针 left, right 不会回退(它们的值只增不减),所以字符串/数组中的每个元素都只会进入窗口一次,然后被移出窗口一次,不会说有某些元素多次进入和离开窗口,所以算法的时间复杂度就和字符串/数组的长度成正比。前文 算法时空复杂度分析实用指南 有具体讲时间复杂度的估算,这里就不展开了。

说句题外话,我发现很多人喜欢执着于表象,不喜欢探求问题的本质。比如说有很多人评论我这个框架,说什么散列表速度慢,不如用数组代替散列表;还有很多人喜欢把代码写得特别短小,说我这样代码太多余,影响编译速度,LeetCode 上速度不够快。

我的意见是,算法主要看时间复杂度,你能确保自己的时间复杂度最优就行了。至于 LeetCode 所谓的运行速度,那个都是玄学,只要不是慢的离谱就没啥问题,根本不值得你从编译层面优化,不要舍本逐末……

我的公众号重点在于算法思想,你把框架思维了然于心,然后随你魔改代码好吧,你高兴就好。

言归正传,下面就直接上四道力扣原题来套这个框架,其中第一道题会详细说明其原理,后面四道就直接闭眼睛秒杀了。

因为滑动窗口很多时候都是在处理字符串相关的问题,而 Java 处理字符串不方便,所以本文代码为 C++ 实现。不会用到什么特定的编程语言技巧,但是还是简单介绍一下一些用到的数据结构,以免有的读者因为语言的细节问题阻碍对算法思想的理解:

unordered_map 就是哈希表(字典),相当于 Java 的 HashMap,它的一个方法 count(key) 相当于 Java 的 containsKey(key) 可以判断键 key 是否存在。

可以使用方括号访问键对应的值 map[key]。需要注意的是,如果该 key 不存在,C++ 会自动创建这个 key,并把 map[key] 赋值为 0。所以代码中多次出现的 map[key]++ 相当于 Java 的 map.put(key, map.getOrDefault(key, 0) + 1)

另外,Java 中的 Integer 和 String 这种包装类不能直接用 == 进行相等判断,而应该使用类的 equals 方法,这个语言特性坑了不少读者,在代码部分我会给出具体提示。

一、最小覆盖子串

先来看看力扣第 76 题「最小覆盖子串」难度 Hard:

就是说要在 S(source) 中找到包含 T(target) 中全部字母的一个子串,且这个子串一定是所有可能子串中最短的。

如果我们使用暴力解法,代码大概是这样的:

for (int i = 0; i < s.size(); i++)
    for (int j = i + 1; j < s.size(); j++)
        if s[i:j] 包含 t 的所有字母:
            更新答案

思路很直接,但是显然,这个算法的复杂度肯定大于 O(N^2) 了,不好。

滑动窗口算法的思路是这样

1、我们在字符串 S 中使用双指针中的左右指针技巧,初始化 left = right = 0,把索引左闭右开区间 [left, right) 称为一个「窗口」。

tip:理论上你可以设计两端都开或者两端都闭的区间,但设计为左闭右开区间是最方便处理的。因为这样初始化 left = right = 0 时区间 [0, 0) 中没有元素,但只要让 right 向右移动(扩大)一位,区间 [0, 1) 就包含一个元素 0 了。如果你设置为两端都开的区间,那么让 right 向右移动一位后开区间 (0, 1) 仍然没有元素;如果你设置为两端都闭的区间,那么初始区间 [0, 0] 就包含了一个元素。这两种情况都会给边界处理带来不必要的麻烦。

2、我们先不断地增加 right 指针扩大窗口 [left, right),直到窗口中的字符串符合要求(包含了 T 中的所有字符)。

3、此时,我们停止增加 right,转而不断增加 left 指针缩小窗口 [left, right),直到窗口中的字符串不再符合要求(不包含 T 中的所有字符了)。同时,每次增加 left,我们都要更新一轮结果。

4、重复第 2 和第 3 步,直到 right 到达字符串 S 的尽头。

这个思路其实也不难,第 2 步相当于在寻找一个「可行解」,然后第 3 步在优化这个「可行解」,最终找到最优解,也就是最短的覆盖子串。左右指针轮流前进,窗口大小增增减减,窗口不断向右滑动,这就是「滑动窗口」这个名字的来历。

下面画图理解一下,needswindow 相当于计数器,分别记录 T 中字符出现次数和「窗口」中的相应字符的出现次数。

初始状态:

增加 right,直到窗口 [left, right) 包含了 T 中所有字符:

现在开始增加 left,缩小窗口 [left, right)

直到窗口中的字符串不再符合要求,left 不再继续移动:

之后重复上述过程,先移动 right,再移动 left…… 直到 right 指针到达字符串 S 的末端,算法结束。

如果你能够理解上述过程,恭喜,你已经完全掌握了滑动窗口算法思想。现在我们来看看这个滑动窗口代码框架怎么用

首先,初始化 windowneed 两个哈希表,记录窗口中的字符和需要凑齐的字符:

unordered_map<char, int> need, window;
for (char c : t) need[c]++;

然后,使用 leftright 变量初始化窗口的两端,不要忘了,区间 [left, right) 是左闭右开的,所以初始情况下窗口没有包含任何元素:

int left = 0, right = 0;
int valid = 0; 
while (right < s.size()) {
    // 开始滑动
}

其中 valid 变量表示窗口中满足 need 条件的字符个数,如果 validneed.size 的大小相同,则说明窗口已满足条件,已经完全覆盖了串 T

现在开始套模板,只需要思考以下几个问题

1、什么时候应该移动 right 扩大窗口?窗口加入字符时,应该更新哪些数据?

2、什么时候窗口应该暂停扩大,开始移动 left 缩小窗口?从窗口移出字符时,应该更新哪些数据?

3、我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?

如果一个字符进入窗口,应该增加 window 计数器;如果一个字符将移出窗口的时候,应该减少 window 计数器;当 valid 满足 need 时应该收缩窗口;应该在收缩窗口的时候更新最终结果。

下面是完整代码:

string minWindow(string s, string t) {
    unordered_map<char, int> need, window;
    for (char c : t) need[c]++;
 
    int left = 0, right = 0;
    int valid = 0;
    // 记录最小覆盖子串的起始索引及长度
    int start = 0, len = INT_MAX;
    while (right < s.size()) {
        // c 是将移入窗口的字符
        char c = s[right];
        // 扩大窗口
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c])
                valid++;
        }
 
        // 判断左侧窗口是否要收缩
        while (valid == need.size()) {
            // 在这里更新最小覆盖子串
            if (right - left < len) {
                start = left;
                len = right - left;
            }
            // d 是将移出窗口的字符
            char d = s[left];
            // 缩小窗口
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
                if (window[d] == need[d])
                    valid--;
                window[d]--;
            }                    
        }
    }
    // 返回最小覆盖子串
    return len == INT_MAX ?
        "" : s.substr(start, len);
}

warning:使用 Java 的读者要尤其警惕语言特性的陷阱。Java 的 Integer,String 等类型判定相等应该用 equals 方法而不能直接用等号 ==,这是 Java 包装类的一个隐晦细节。所以在缩小窗口更新数据的时候,不能直接改写为 window.get(d) == need.get(d),而要用 window.get(d).equals(need.get(d)),之后的题目代码同理。

需要注意的是,当我们发现某个字符在 window 的数量满足了 need 的需要,就要更新 valid,表示有一个字符已经满足要求。而且,你能发现,两次对窗口内数据的更新操作是完全对称的。

valid == need.size() 时,说明 T 中所有字符已经被覆盖,已经得到一个可行的覆盖子串,现在应该开始收缩窗口了,以便得到「最小覆盖子串」。

移动 left 收缩窗口时,窗口内的字符都是可行解,所以应该在收缩窗口的阶段进行最小覆盖子串的更新,以便从可行解中找到长度最短的最终结果。

至此,应该可以完全理解这套框架了,滑动窗口算法又不难,就是细节问题让人烦得很。以后遇到滑动窗口算法,你就按照这框架写代码,保准没有 bug,还省事儿

下面就直接利用这套框架秒杀几道题吧,你基本上一眼就能看出思路了。

二、字符串排列

这是力扣第 567 题「字符串的排列」,难度中等:

注意哦,输入的 s1 是可以包含重复字符的,所以这个题难度不小。

这种题目,是明显的滑动窗口算法,相当给你一个 S 和一个 T,请问你 S 中是否存在一个子串,包含 T 中所有字符且不包含其他字符

首先,先复制粘贴之前的算法框架代码,然后明确刚才提出的几个问题,即可写出这道题的答案:

// 判断 s 中是否存在 t 的排列
bool checkInclusion(string t, string s) {
    unordered_map<char, int> need, window;
    for (char c : t) need[c]++;
 
    int left = 0, right = 0;
    int valid = 0;
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c])
                valid++;
        }
 
        // 判断左侧窗口是否要收缩
        while (right - left >= t.size()) {
            // 在这里判断是否找到了合法的子串
            if (valid == need.size())
                return true;
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
                if (window[d] == need[d])
                    valid--;
                window[d]--;
            }
        }
    }
    // 未找到符合条件的子串
    return false;
}

对于这道题的解法代码,基本上和最小覆盖子串一模一样,只需要改变几个地方:

1、本题移动 left 缩小窗口的时机是窗口大小大于 t.size() 时,因为排列嘛,显然长度应该是一样的。

2、当发现 valid == need.size() 时,就说明窗口中就是一个合法的排列,所以立即返回 true

至于如何处理窗口的扩大和缩小,和最小覆盖子串完全相同。

note:由于这道题中 [left, right) 其实维护的是一个定长的窗口,窗口大小为 t.size()。因为定长窗口每次向前滑动时只会移出一个字符,所以可以把内层的 while 改成 if,效果是一样的。

三、找所有字母异位词

这是力扣第 438 题「找到字符串中所有字母异位词」,难度中等:

呵呵,这个所谓的字母异位词,不就是排列吗,搞个高端的说法就能糊弄人了吗?相当于,输入一个串 S,一个串 T,找到 S 中所有 T 的排列,返回它们的起始索引

直接默写一下框架,明确刚才讲的 4 个问题,即可秒杀这道题:

vector<int> findAnagrams(string s, string t) {
    unordered_map<char, int> need, window;
    for (char c : t) need[c]++;
 
    int left = 0, right = 0;
    int valid = 0;
    vector<int> res; // 记录结果
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c]) 
                valid++;
        }
        // 判断左侧窗口是否要收缩
        while (right - left >= t.size()) {
            // 当窗口符合条件时,把起始索引加入 res
            if (valid == need.size())
                res.push_back(left);
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
                if (window[d] == need[d])
                    valid--;
                window[d]--;
            }
        }
    }
    return res;
}

跟寻找字符串的排列一样,只是找到一个合法异位词(排列)之后将起始索引加入 res 即可。

四、最长无重复子串

这是力扣第 3 题「无重复字符的最长子串」,难度中等:

这个题终于有了点新意,不是一套框架就出答案,不过反而更简单了,稍微改一改框架就行了:

int lengthOfLongestSubstring(string s) {
    unordered_map<char, int> window;
 
    int left = 0, right = 0;
    int res = 0; // 记录结果
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        window[c]++;
        // 判断左侧窗口是否要收缩
        while (window[c] > 1) {
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            window[d]--;
        }
        // 在这里更新答案
        res = max(res, right - left);
    }
    return res;
}

这就是变简单了,连 needvalid 都不需要,而且更新窗口内数据也只需要简单的更新计数器 window 即可。

window[c] 值大于 1 时,说明窗口中存在重复字符,不符合条件,就该移动 left 缩小窗口了嘛。

唯一需要注意的是,在哪里更新结果 res 呢?我们要的是最长无重复子串,哪一个阶段可以保证窗口中的字符串是没有重复的呢?

这里和之前不一样,要在收缩窗口完成后更新 res,因为窗口收缩的 while 条件是存在重复元素,换句话说收缩完成后一定保证窗口中没有重复嘛。

好了,滑动窗口算法模板就讲到这里,希望大家能理解其中的思想,记住算法模板并融会贯通。回顾一下,遇到子数组/子串相关的问题,你只要能回答出来以下几个问题,就能运用滑动窗口算法:

1、什么时候应该扩大窗口?

2、什么时候应该缩小窗口?

3、什么时候应该更新答案?

我在 滑动窗口经典习题 中使用这套思维模式列举了更多经典的习题,旨在强化你对算法的理解和记忆,以后就再也不怕子串、子数组问题了。


引用本文的文章


引用本文的题目

安装 我的 Chrome 刷题插件 点开下列题目可直接查看解题思路:


_____________

《labuladong 的算法小抄》已经出版,关注公众号查看详情;后台回复「全家桶」可下载配套 PDF 和刷题全家桶